Home > open-source, PlanetCDOT, programming > A Scalable Solution Part One: Local Reference Frame

A Scalable Solution Part One: Local Reference Frame

Blog Reading Requirement: you need to know what a reference frame is, from wiki:

“A frame of reference in physics, may refer to a coordinate system or set of axes within which to measure the position, orientation, and other properties of objects in it, or it may refer to an observational reference frame tied to the state of motion of an observer. It may also refer to both an observational reference frame and an attached coordinate system as a unit…”

Read the source article here.

In this series of blog posts, I will be talking about scaling 3D objects in their local reference frame and in the world reference frame. In part one, I will be introducing the topic and detailing scaling in the local reference frame. In part two, I will be introducing scaling in the world reference frame as well as detailing some of the differences between the two types of scaling. I will also be detailing some of the complexities as well as a possible implementation.

As an artist, the ability to scale groups of objects is fairly important when working with 3D models. When scaling an object, it is done against a known axial reference frame; typically, the two most useful reference frames are the world reference frame and the local reference frame and they are vastly different. The local reference frame changes as the object is rotated while the world reference frame never changes. I will take this blog to elaborate on some of the challenges and requirements involved in implementing these manipulations as well as giving a possible implementation.

Local reference frame scaling is the simpler of the two as it is performed against the local reference frame of the object that is being scaled. With groups of objects, it is expected that each object in the group is scaled against its own local reference frame as opposed to the reference frame of the group. It is also expected that the positions of the objects in the group will not be affected by the scaling operation.

This scaling method is simple because it only involves applying a scaling transform against the 3 known axes of any given object. This means that the scale parameters can be stored as 3 floats. During frame rendering, the transform could be applied after position and rotation have been applied; this fits in with the rendering pipeline of most 3D engines and means that one could simply alter the scale parameter present on a renderable object in most 3D engines.

In part two, I will be introducing world reference frame scaling and what complexities may arise from allowing the combination of the two methods. Thank you for reading.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: